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2- Charged cosmic rays: An unexplored region in science.  Using a magnetic spectrometer 
(AMS) on ISS is the only way to measure high energy charged cosmic rays.

1- Chargedless cosmic rays (light rays and neutrinos):
Light rays have been measured (e.g., Hubble) for over 50 years. 
Fundamental discoveries have been made.

Fundamental Science on the International Space Station (ISS)
There are two kinds of cosmic rays traveling through space

AMS

The major physical science experiment 
on the ISS

AMS
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AMS is an international collaboration of 16 countries, 60 institutes (10 U.S.) and 600 physicists.  
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B = 0.5 Gauss

STEP ONE: 
A Permanent Magnet to fly on the Shuttle 

1- Minimum torque from Earth’s 
magnetic field

2- Minimum field leakage 

3- Minimum weight: no iron

STEP TWO: 
A Superconducting Magnet
with the same field arrangement

There has never been a  superconducting magnet in space
due to the extremely difficult technical challenges

AMS-01

AMS-02



First flight AMS-01
Approval: April 1995, Assembly: December 1997, Flight: June 1998

y96207_05b

AMS



There are many more positrons (e+) than electrons (e-)
Unexpected results from first flight:

Geomagnetic 
latitude 
(radians)

Phys. Lett. B484 (27 Jun 2000) 10-22



“Helium in Near Earth Orbit”
(Mass of He4 = 3.7 GeV; He3 = 2.8 GeV)
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He32.86±±±±0.04

Mass (GeV)

Magnetic Latitude (rad)

Physics Letters B vol.494 (3-4),  p193.

AMS-01 results were not predicted by any cosmic ray model
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TRD
Electrons

Silicon Tracker
Mass, Charge, Energy

ECAL
Electrons, Gamma-rays

RICH
Mass, Charge, Energy

TOF
Mass, Charge, Energy

AMS on ISS
Particles are identified by their 

mass, charge and energy.  

Magnet
Mass, ±±±± Charge, Energy



The Superconducting magnet

2,500 liters of Superfluid Helium (1.8K)
Duration: 3-5 years



For AMS-02, two Magnets were built:
One for Space Qualification Tests in Germany and Italy



T0 = 94.6 years
(Field decay 1.1% per year)

L = 49.2 H
R = 17 nΩ
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Testing of the flight magnet

Once charged, the magnetic field will decay ~5% in 5 years.
It will require no additional charge.



radiator

Xe/CO2

Signal wire Straw
Tube

heavy
particle

5248 tubes filled with Xe/CO2, 2m length centered to 100 µµµµm 
Life time ~ 21 years
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Transition Radiation Detector (TRD) Identifies electrons



Veto System rejects random cosmic rays

Measured veto efficiency 
better than 0.9999

AMS-02 Magnet with Veto Counters



Test results: measure all nuclei simultaneously

Silicon 
Tracker

Resolution: 10 µµµµm

8 planes, 200,000 channels



AMS-01

In space, the tracker alignment of 3 µµµµm will be 
continuously monitored by 40 Laser beams.

On launch pad

On orbit

Tracker alignment



Ring Imaging Cerenkov Counter (RICH)

Radiator

10,880 Photodetectors

Reflector

Particle: Velocity(θ), Charge(Intensity)

γγγγ
θ



Tests with Accelerator at E=158 GeV/n
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RICH has no consumables: AMS on ISS can study 
high energy cosmic ray spectra indefinitely



Calorimeter (ECAL)

e±±±±, γγγγ proton

A precision 3-dimensional measurement of the 
directions and energies of light rays and electrons

10 000 fibers, φ = 1 φ = 1 φ = 1 φ = 1 mm
distributed uniformly 
Inside 1,200 lb of lead



We gained extensive experience,
adjusted all the cables and 
the integration sequence by 

integrating AMS in 2008



y04K513_05

Test results Test results Test results Test results 
from from from from 

acceleratoracceleratoracceleratoraccelerator
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AMS  Astronauts with AMS detectors 13-16 Oct 2009



Fill Port

The astronauts strongly urged us to study the on-orbit refill capability 
so that AMS will continue to produce unique science

Mark E. Kelly Gregory H. 
Johnson

E. M. “Mike” 
Fincke

Andrew J.
Feustel 

Roberto Vittori

Gregory Errol
Chamitoff
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Flight Integration of AMS:
installation of the Veto system



Flight Integration of AMS:
cabling

of the inner tracker



Flight Integration of AMS: mounting of the TRD and TOF



Flight Integration of AMS:
installation of the

TOF, RICH & ECAL

All of the detectors have been re-integrated and functionally tested



The AMS Science Operation 
and Data Analysis Center at CERN
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Search for Cold Dark Matter: χχχχ0
Physics example

Collisions of χχχχ0 will produce excesses in the spectra of 
e+,e-,p different from known cosmic ray collisions

AMS-02 (mχχχχ=200 GeV)

From Dark matter 
collisions

The spectra of all types of cosmic rays 
will be measured by AMS simultaneously



100 100010
R. Battiston, S. Haino  2009



AMS spectra
with Mχ = 840 GeV

(not accessible to LHC)

y06K318a

p
/p

AMS is sensitive to very high SUSY masses

From normal 
cosmic ray collisions

From Dark matter 
collisions



Accelerators

AMS in Space

The Big Bang origin of the Universe requires matter and antimatter
to be equally abundant at the very hot beginning

Physics examples
Search for the existence of Antimatter in the Universe

AMS

LHC



AMS-02 Antihelium Limits

Current antimatter
searches are limited

y06K301
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Study of high energy (0.1 GeV – 1 TeV) diffuse gammas 

AMS Physics example

The diffuse gamma-ray spectrum of the Galactic plane
40o < 1 < 100o, |b| < 5o

AMS-02

Space Experiments Ground Experiments

T.Prodanovi ´́́́c et al., astro-ph/0603618 v1 22 Mar 2006

EGRET

e+e−

γγγγ

1. Pointing precision of 2 arcsec
2. UTC time (from GPS, µsec accuracy) allows to relate 

AMS measurements with other missions



Pulsars in the Milky Way:

Pulsar: 
Neutron star sending radiation in a periodic way, currently measured with millisec accuracy.

Emission in radio, visible, X- and gamma rays currently measured up to ~1 Gev.

AMS: pulsar periods measured with µsec time precision and
energy spectrum for pulsars measured to 1 TeV
(a factor of 1,000 improvement in time and energy).

Similar studies can be made for Blazers and Gamma Ray Bursters



There are six types of Quarks found in accelerators (u, d, s, c, b, t).

All matter on Earth is made out of only two types (u, d) of quarks.

“Strangelets” are new types of matter composed of three types of

quarks (u, d, s) which should exist in the cosmos.

i. A stable, single 
“super nucleon”  
with three types of 
quarks

ii. “Neutron” stars may 
be one big 
strangelet

Carbon Nucleus
Z/A ~ 0.5

Strangelet
Z/A ~ 0.1
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AMS will provide a definitive search for this new type of matter.

Physics Example
Search for New Matter in the Universe

Jack Sandweiss, Yale University



Strangelet candidate from AMS-01

Background probability < 10-3

AMSAMSAMSAMS----01010101
Z/A

Observed 5 June 1998 11:13:16 UTC
Lat/Long= -44.38°°°°/+23.70°°°°, Local Cutoff 1.95±±±±0.1 GV, Angle= 77.5°°°° from local zenith

Front view Side view
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Rigidity      = 4.31 ±±±± 0.38 GV

Charge Z = 2 

ββββ1 1 1 1 = ββββ2222 = 0.462 ±±±± 0.005 

Mass          = 16.45±±±±0.15 GeV/c2

Z/A             = 0.114 ±±±± 0.01

Flux (1.5 < EK < 10 GeV) = 5x10-5 (m2 sr sec)-1

CandidateCandidateCandidateCandidate
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Facility Original purpose,
Expert Opinion

Discovery with
Precision Instrument

Brookhaven π N interactions

νe, νµ
CP violation,

J

FNAL Neutrino physics b, t quarks

SLAC Spear ep, QED Scaling, ΨΨΨΨ, ττττ
PETRA t quark Gluon

Super Kamiokande Proton decay Neutrino oscillations

AMS on ISS
Dark Matter, Antimatter

Strangelets,… ?

Hubble Space
Telescope

Galactic
survey

Curvature of the universe, 
dark energy

P.S. CERN π N interactions Neutral Currents -> Z, W

Exploring a new territory with a precision instrument is the key to discovery.

(1960’s)

(1960’s)

(1970’s)

(1970’s)

(1980’s)

(2000)

(1990’s)



The issues of antimatter in the universe and the origin of Dark Matter 
probe the foundations of modern physics.

The Cosmos is the Ultimate Laboratory.
Cosmic rays can be observed at energies higher than any accelerator.  

AMS

The most exciting objective of AMS is to probe the unknown; 

to search for phenomena which exist in nature that we have 

not yet imagined nor had the tools to discover.




